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Abstract 

Parking functions are well researched and interesting results are found in 

the listed references and more. Some introductory results stemming from 

application to degree sequences of simple connected graphs are provided 

in this paper. Amongst others, the result namely, that a derivative degree 

sequence, 

( ) ( )GGd dd D∈  

( ) ( ) ( )
( ) ( ) ,2with,,...,,, 21







 ≥∀=|
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of a simple connected graph G is a parking function, is presented. We also 

introduce the concept of looping degree sequences and the looping 

number, ( ).Gξ  Four open problems are proposed as well.  
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1. Introduction 

Let the simple connected graph ( )EVG ,=  have vertices { }....,,,, 321 nvvvvV =  

Allow each vertex iv  to associate itself with a singular value 

( ) { },1...,,3,2,1,0 −∈= njvd i  as its preferred value. Allow for n parking spaces 

npppp ...,,,, 321  and allow the vertices to stream in randomly under the rule that a 

vertex iv  only occupies a parking space if its preferred value j has a vacant parking 

space jp  or has ( ) nkjkp ≤≤+1,  vacant, else vertex iv  cliffs. It is known that if 

( ) n
naaaa P∈=α ...,,,, 321  and nbbb ≤≤≤ �21  is the increasing representation 

of α, then α is a parking function if and only if .ibi ≤  It is also known that every 

permutation of the entries of a parking function is a parking function. So the converse 

holds namely, if a sequence of integers say, ( )naaaa ...,,,, 321  is not a parking 

function, then no permutation thereof is a parking function. In addition the strict 

definition it will be relaxed so that the default preferred value zero is allowed. So we 

allow for cases ( )naaaa ...,,,,,0 321=α∗  to be considered. 

For ease of reference let us state a corollary done similarly by Stanley, in [12]. 

Corollary 1.1. Let ( ) n
naaaa P∈=α ...,,,, 321  and nbbb ≤≤≤ �21  be the 

increasing representation of α. Then α is a parking function if and only if ,ibi ≤  

and every permutation of the entries of a parking function is also a parking function. 

It is obvious that if ( )naaaa ...,,,, 321=α  is a parking function on n parking 

spaces, then ( )naaaa ...,,,,,0 321=α∗  is a parking function on ( )1+n  parking 

spaces. 

2. Parking Functions in Respect of the Degree Sequences of 

Simple Connected Graphs 

It is easy to see that if the vertices of a path ,nP  N∈n  are labelled from left to 

right consecutively as ,...,,,, 321 nvvvv  the degree sequence of the path ,nP  namely, 

(

( )

)1,2...,,2,2,1

-2

�����
entriesn−

 is a parking function. Similarly, easy to see that the degree 
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sequence of the cycle ,nC  namely, ( )
�������

entriesn-

2...,,2,2,2  is not a parking function since 

exactly one vertex ,iv  { }ni ...,,3,2,1∈  will cliff. This leads to the observation that 

if the degree sequence of a spanning subgraph say, graph H (or at least a spanning 

tree thereof, [3] and Theorem 2.6) of a simple connected graph G is a parking graph, 

the degree sequence of G might not be. However, the converse holds. 

Theorem 2.1. If the degree sequence of a simple connected graph G is a 

parking function, then the degree sequence of any spanning subgraph H of G is a 

parking function. 

Proof. Let a spanning subgraph of G be graph H. Label the vertices of G as 

,...,,,, 321 nvvvv  and assume the degree sequence of G is a parking function. Then 

from the definition of a spanning subgraph H we have that the degree sequence is 

given by 

( ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ))....,,,, 332211 nGnHGHGHGH vdvdvdvdvdvdvdvd ≤≤≤≤  

This implies that the degree sequence is merely a permutation of the increasing 

representation of the sequence 

( ( ) ( ) ( ) ( ) ).1...,,2,1,11 −=≤≤≤ ++ nivdvdvdvd iGiHiGiH  

Since, ( ) ivd iG ≤  it follows that ( ) ivd iH ≤  and therefore a parking function. ~ 

From our earlier observation that ( )naaaa ...,,,,,0 321=α∗  is a parking 

function on ( )1+n  parking spaces if and only if ( )naaaa ...,,,, 321=α  is a 

parking function on n parking spaces, it follows that if the degree sequence of a 

simple connected graph G is a parking function on n parking spaces, then the degree 

sequence of ∞→mmKG ,1∪  is a parking function on ( ) ∞→+ mmn ,  parking spaces. 

Proposition 2.2. For a simple connected graph G on n vertices the degree 

sequence ( )Gd  is a parking function if ( ) .
2 



≤∆

n
G  

Proof. Consider the graph on one vertex .1v  Hence, ( ) .
2

1
01 



≤=vd  With one 

parking space available vertex 1v  can by default, park. So the result holds for .1=n  

Assume it holds for any simple connected graph on kn =  vertices. Now consider any 
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simple connected graph ,1+
∗ += kivvGG  for possibly multiple ki ...,,3,2,1=  

such that ( ) .
2

1
1 



 +

≤+
k

vd k  So now, we provide 1+k  parking spaces. 

If the n vertices of G stream in at random as before they can occupy parking 

spaces as before or a permutation thereof and any one vertex may occupy the parking 

space 1+k  as a result of a change in preferred value as well. At all times one 

parking space ,ip  




 +

≥
2

1k
i  is available. Hence, vertex 1+kv  with ( ) ≤+1kvd  

( )




 +

≤




≤∆

2

1

2

nn
G  always has a parking space to occupy. Through mathematical 

induction it follows that for all graphs for which, ( ) ,
2 



≤∆

n
G  the degree sequence 

( )Gd  is a parking function. ~ 

Corollary 2.3. If the degree sequence of a simple connected graph G is a 

parking function then G has at least one pendant vertex. 

Proof. Since a vertex parked in parking space 1p  the result follows from the 

definition of connectivity and that of a parking function. ~ 

Lemma 2.4. For the Jaco Graph ( )1nJ  we have that ( )( ) .
2

1




≤∆

n
Jn  

Proof. Because ,
2

1

2 



 +

≤




 nn

 the result follows from Lemma 1.2 and 

Corollary 1.3 in [10]. ~ 

Corollary 2.5. The degree sequence of a Jaco Graph ( )1nJ  is a parking 

function. 

Proof. Follows immediately from the definition of a Jaco Graph ( )1nJ  in [10] 

and Proposition 2.2 above. ~ 

Theorem 2.6. The degree sequence of any tree is a parking function. 

Proof. Consider the tree on one vertex .1v  Hence, ( ) .01 =vd  With one parking 

space available vertex 1v  can be default, occupy. So the result holds for .1=n  

Assume it holds for any tree on kn =  vertices. Now consider any tree 
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,1+
∗ += kivvTT  { }....,,3,2,1 ki ∈  So we provide 1+k  parking spaces. If the n 

vertices of T stream in at random as before they can occupy parking spaces as before 

or a permutation therefore. Any vertex may even occupy parking space 1+k  as a 

result of change of preferred value as well. At all times one parking space ,ip  1≥i  

is available. Since ( ) 11 =+kvd  it can occupy any vacant parking space ,ip  .1≥i  

Hence the result follows for any tree on 1+= kn  vertices and therefore, through 

mathematical induction it follows to hold for all trees on N∈n  vertices. ~ 

Proposition 2.7. Consider any tree T on 4≥n  vertices and construct the tree 

∗T  by linking any two vertices ,iv  jv  of T such that at least one pendant vertex 

remains. Then the degree sequence of ∗T  is a parking function. 

Proof. Construct any ∗T  as defined in the proposition. Label the cycle C and 

assume it is isomorphic to .mC  So mCT −∗  is a forest of �  trees, .ii TF �∪=  

Consider any tree FT j ∈  which was linked to iv  in .mC  Link one pendant 
1kv  to 

.iv  Because all degrees of all vertices in mC  equals 2 only one vertex cliffs because 

all vertices have to skip parking .1p  But with the added pendant vertex an additional 

parking space 1+mp  is allowed so all vertices of mC  park and the pendant vertex 

occupies .1p  Hence the degree sequence of 
1km vC +  is a parking function. 

By linking another pendant 
2kv  to iv  or 

1kv  a similar result follows because 

now we provide 2+m  parking spaces. By smartly linking pendants recursively, the 

tree jT  can be reconstructed as linked before to .iv  So it follows that the degree 

sequence of jm TC +  is a parking function. Label jm TC +  as .1
∗

+mG  So we proved 

the result for .1
∗

+mG  

Assume the result holds for ,∗
+ xmG  .�≤x  Also assume that 

( )xmxm TTTCG ++++=∗
+ �21  

has ( )tm +  vertices. This means that the ( )tm +  vertices all park in ( )tm +  parking 

spaces. Consider any other tree FTx ∈+1  which was linked to .∗
iv  By the same 
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reasoning as before the degree sequence of ∗∗
+ + ixm vG  is a parking function. So 

through finite mathematical induction the result follows. ~ 

Corollary 2.8. The degree sequence of a unicyclic graph is a parking function. 

Proof. Follows directly from Proposition 2.7. ~ 

Although we mainly consider simple connected graphs it is useful to note that: 

Lemma 2.9. If the respective degree sequences of simple connected graphs 

sGGGG ...,,,, 321  are all parking functions the degree sequence of the graph 

,j
s

iji GGH ≠∀= ∪  is a parking function. 

Proof. Let ,11 ν=V  ....,,22 ssVV ν=ν=  Since �� ∪∪ GGGG qq =  

we have that .321 sj
s

iji GGGGGGH ∪�∪∪∪∪ �≠∀=  Without loss of 

generality consider graphs 1G  and 2G  and the degree sequence of 1G  stream in first. 

Note that 21 ν+ν  parking spaces are available. Because the degree sequence of 1G  

is a parking function all the vertices of 1G  will park within the first 1ν  parking 

spaces. Now 2ν  parking spaces remain and numbered 

( ) ( ) ( ) ( )....,,3,2,1 21111 ν+ν+ν+ν+ν  

Since the degree sequence of 2G  is a parking function a vertex iv  of 2G  

initially occupied a parking space ,jp  .1 2ν≤≤ jp  The equivalent parking space 

in 212 GGH ∪=  that is available is numbered, .211 ν+ν≤ν+jp  Hence all 

vertices of 2G  will find parking space. So the result holds for .212 GGH ∪=  

Assume it holds for .21 tt GGGH ∪�∪∪=  Now consider the graph 

.1211 ++ = ttt GGGGH ∪∪�∪∪  Since, 

( ) ,1211211 +++ == ttttt GGGGGGGGH ∪∪�∪∪∪∪�∪∪  

the results holds for the graph 1+tH  and it follows immediately to hold in general. ~ 

Definition 2.1. For a simple connected graph G, define the set of derivative 

degree sequences, 
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( )
( ) ( ) ( )

( ) ( ) .2with,,,...,,, 21
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d vdivd
vdvdvd
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The next theorem is of importance. 

Theorem 2.10 (Daneel’s theorem)
1
. A derivative degree sequence 

( ) ( )GGd dd D∈  is a parking function. 

Proof. The derivative degree sequence with largest entries is certainly, 

( )
( )( ) ( )

....,,3,2,1,
min

2













=













≥

ni
vd

vd

ivdi

i  

This implies that if 

( )
( )( ) ( )

,...,,3,2,1,
min

2













=













≥

ni
vd

vd

ivdi

i  

can be shown to be a parking function then all others derivative degree sequences are 

as well since, 

( ) ( )
( )( ) ( )

( ) ;2,
min

2

≥=











≤






≥
i

vdi

ii vd
vd

vdvd

i

�
�

   .i∀  

(See Corollary 1.1). 

For any simple connected graph we have that if 
( )

( )( ) ( ) 











≥2
min

ivdi

i

vd

vd
 for exactly 

one vertex then ( ) ( ).2−≤∆ nG  So in general ( ) ( )2−≤∆ nG  for all simple 

connected graphs with 

( )
( )( ) ( )

.2
min

2

≥












≥ivdi

i

vd

vd
 

The above implies that if n is even then ( )2+n  parking spaces are available 

beyond the largest preferred value, .
2

2




 −n

 So in all cases we have that 

                                                           
1
In memory of my young friend who so untimely (11 September 2013, age 25), parked 

his soul somewhere in space. 
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( )
( )( ) ( )

,
min

2

i
vd

vd

ivdi

i ≤












≥

   ,...,,3,2,1 ni =  

which implies the derivative degree sequence to be a parking function. 

It also implies that if n is uneven then ( )1+n  parking spaces are available 

beyond the largest preferred value, .
2

2




 −n

 

So in all cases we have that 

( )
( )( ) ( )

,
min

2

i
vd

vd

ivdi

i ≤












≥

   ,...,,3,2,1 ni =  

which implies the derivative degree sequence to be a parking function. 

Finally then, since 

( )
( )( ) ( )














=













≥

ni
vd

vd

ivdi

i ...,,3,2,1,
min

2

 

is a parking function for both n even or uneven, the result that a derivative degree 

sequence ( ) ( )GGd dd D∈  of a simple connected graph G is a parking function, 

follows. ~ 

2.1. Looping degree sequences of { },...,,,, 321 rvvvvG −  1−≤ nr  

Looping degree sequences are found by allowing the degree sequence of a 

simple connected graph G to stream in and when the maximum set of vertices 

{ }parksvvT tt |=  parks, the degree sequence reduces to the degree sequence of 

.TG −  Recursively then, when on the first stream vertex rv  parks, the degree 

sequence reduces to the degree sequence of { },...,,,, 321 rvvvvG −  .1−≤ nr  Now 

the first loop streams with the degree sequence of .TG −  After all vertices find 

parking we refer to the set dR  of recursive degree sequences as a recursive parking 

function. 

Example. For the complete graph ,nK  n even the recursive parking function is 

given by the set 
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{( ) ( )

( )

( )}.1,1...,,3...,,3,3,3,1...,,1,1,1

-2-

����� ������ ������� ������ ��
entriesnentriesn

d nnnnnnnn

−

−−−−−−−−=R  

Also see Lemma 2.12 (Case 1). 

Theorem 2.11. For any simple connected graph G on n vertices the recursive 

parking function is a finite set. 

Proof. It is obvious that if the degree sequence of a simple connected graph G is 

a parking function, the result holds since such a degree sequence is a recursive degree 

sequence in itself. 

Furthermore, it is obvious that we only have to consider the extremal case where 

it is found that on the first stream and subsequent looping streams, only one vertex at 

a time finds parking. All other cases show an improvement in that the number of 

loops required decreases. It is also known that if the degree sequence of a simple 

connected graph G is not a parking function then, neither the permutations thereof are 

parking functions. However, any first vertex of the degree sequence stream or of a 

permutation thereof, will park since n parking spaces are available and 

( ) ,1−≤∆ nG  and therefore any ( ) ,1−≤ nvd i  .i∀  

Therefore, on the next round of streaming (looping), 1−n  parking spaces are 

available whilst ( ) .21 −≤−∆ nvG  This means that any second vertex of the 

recursive degree sequence or of a permutation thereof, can park. After 1−n  

recursions a single (last) vertex remains say, kv  with ( ) ,0=kvd  and exactly one 

parking space is left. It means that by the default preferred value convention and the 

parking rule, vertex kv  may park at any available parking space, ,ip  ni ≤≤1  

which is not occupied. It also means that for any simple connected graph G the set of 

recursive degree sequences or any permutation thereof (implicitly all ( ) 1
1

−+ n
n  

cases covered), are a finite recursive parking function because all vertices necessary 

find parking. ~ 

2.2. Looping number ( )Gξ  of a simple connected graph, G 

The looping number ( )Gξ  of a simple connected graph G is the maximum 

number of loops required for all vertices to park. Clearly, ( ) 0=ξ G  if and only if the 

degree sequence of G is a parking function. 
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Lemma 2.12. For a simple connected graph G on n vertices we have,  

( ) .
2

1
0





 −

≤ξ≤
n

G  

Proof. If the degree sequence of a simple connected graph G is a parking 

function, then ( ) .0=ξ G  

So we consider the cases where the degree sequences of G are not parking 

functions. Since, the degree sequence of ivG −  equals the degree sequence of 

( ) ( ) ,, iGVvijji vvvG
j

−+ ∈≠  it follows that ( ) ( ).nKG ξ≤ξ  Hence ( )nKξ  provides 

the upper bound. 

Case 1. Let n be even. It follows that in nK  we have ( ) ,1−= nvd i  .i∀  Hence, 

on first streaming exactly two vertices can park in 1−np  and np  whilst the 2−n  

vertices of 2−nK  loops (first loop). Thereafter, exactly two more vertices 

( )( )12 −−= ndegree  can park in 3−np  and 2−np  whilst the 4−n  vertices of 

4−nK  loops (second loop). Recursively after exactly 2
2

−
n

 loops only ,2K  with 

exactly two parking spaces ,1p  2p  remain. Hence, after one more loop or, after 





 −

=+





 −

2

1
12

2

nn
 loops all vertices park. 

Case 2. Let n be uneven. The proof follows similar to Case 1 except that 

recursively after exactly 2
2

−
n

 loops, only ,1K  with exactly one parking space 1p  

remain. Hence, after one more loop or, after 




 −

=+





 −

2

1
12

2

nn
 loops all 

vertices park. ~ 

Note that if the respective degree sequences of graphs 1G  and 2G  are parking 

functions the degree sequence of 21 GG +  is not necessarily a parking function. It 

remains an open problem for which graphs the result will hold. 

Corollary 2.13. We have that ( ) ( ).
N

N
∈
Σ∈ ξ=ξ

i
ii PP∪  

Proof. Consider nP  and ,mP  ( ) .1 N∈≥n  The vertices of path nP  can park in 

the first n parking spaces and so can the vertices of mP  park in the following 1+n  
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to mn +  parking spaces or vice versa. Equally so can the vertices of mnP +  park in 

( )mn +  parking spaces because we have in mnP +  that, ( ) 2=nvd  and 

( ) .21 =+nvd  Hence, these two vertices can still park in parking spaces, n and .1+n  

So the result follows for nP  and .mP  Through induction it follows that 

( ) ( ).
N

N
∈
Σ∈ ξ=ξ

i
ii PP∪  ~ 

Now the next theorem can be settled. 

Theorem 2.14. For the respective degree sequences of two simple connected 

graphs 1G  and 2G  we have that: 

(a) if both degree sequences are parking functions, the looping number 

( ) ,121 ≤+ξ GG  

(b) if at least one degree sequence is not a parking function, the looping number 

( ) ( ) ( ) .12121 +ξ+ξ≤+ξ GGGG  

Proof. (a) Consider the simple connected graphs 1G  and 2G  on n and m 

vertices, respectively. Assume both degree sequences of 1G  and 2G  are parking 

functions. Because 1221 GGGG +=+  we only have to consider the case .21 GG +  

Without loss of generality assume .mn ≤  

Case a(1). Assume that all the vertices of graph 1G  stream in randomly, first. 

Then as before these vertices will park in the consecutively labelled parking spaces 

....,,, 21 mnmm ppp +++  Now the vertices of 2G  stream in randomly and since the 

remaining parking spaces are labelled ( ) ( ) ( )nmmnnn pppppp −+++ ...,,,,...,,, 2121  

some vertices of 2G  can park by definition, and some (or all) may cliff to enter loop 

one. On the first loop the graph 21 GG +  reduces to at most 2G  or a subgraph of 2G  

and since the number vacant parking spaces equals the number of vertices 

( )2GVvi ∈  that cliffed, those vertices can all park by definition. It implies that 

( ) .121 =+ξ GG  Since no cliffing occurs for 11 KK +  the result suggests that if both 

the respective degree sequences of two simple connected graphs 1G  and 2G  are 

parking functions, then ( ) .121 ≤+ξ GG  
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Case a(ii). Assume that all the vertices of graph 2G  stream in randomly, first. 

Then as before these vertices will park in the consecutively labelled parking spaces 

....,,, 21 nmnn ppp +++  

Since exactly n parking spaces labelled, nppp ...,,, 21  remain vacant and only 

the vertices of 1G  with the reduces degree sequence of 1G  streams in on loop 1, all 

vertices can park. As before we have that for 11 KK +  no cliffing occurs so the result 

suggests that if both the respective degree sequences of two simple connected graphs 

1G  and 2G  are parking functions, then ( ) .121 ≤+ξ GG  

Case a(iii). Also let any vertex say, ( )1GVvk ∈  stream in first. As an extremal 

case assume vertex kv  parked in the space np  initially. Now the degree of kv  

increased by m so it can park in, at most, the parking space mnp +  in .21 GG +  Now 

as the next extremal case assume without loss of generality that any vertex say, 

( )2GVv ∈�  streams in. Certainly then, since the degree of vertex ( )2GVv ∈�  has 

increased by n it can park in, at most, the vacant parking space numbered ( ).nm −  

So this is possible for all vertices of the graph 21 GG +  streaming in randomly, 

allowing for some vertices of both ( )1GV  and ( )2GV  to cliff. However, on 

streaming loop 1, all vertices park because the degree values decrease by either n or 

m. As before we have that for 11 KK +  no cliffing occurs so the result suggests that 

if both the respective degree sequences of two simple connected graphs 1G  and 2G  

are parking functions, then ( ) .121 ≤+ξ GG  

Since all cases have been argued and all the suggestions are assertive, the partial 

result that for some graphs ( ) ( ) ( ),2121 GGGG ξ+ξ<+ξ  follows conclusively. 

(b) We know that ( ) ,1=ξ nK  .N∈∀n  Since mnmn KKK +=+  we have that 

( ) ( ) ( )mnmn KKK ξ+ξ<=ξ + 1  so the inequality holds. We also know that 

( ) ,1=ξ nC  .N∈∀n  For mn CC +  we have that ( ) ,2 mvd
nC +=  ( )nCVv ∈∀  and 

( ) ,2 nud
mC +=  ( ).mCVu ∈∀  Also assume without loss of generality that .mn ≥  

Case (b)(i). Let the vertices of nC  stream in first. It implies that exactly 1−n  

vertices of nC  can park in parking spaces ( ) ( ) ( ) ....,,, 122 mnmm ppp ++++  On loop 

one we have the graph mCK +1  looping. Since the graph has no pendant vertex a 
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further loop will be required, leaving exactly 2P  looping into parking. Hence 

( ) .2=+ξ mn CC  It suggests that for some graphs equality ( ) ( ) +ξ=+ξ 121 GGG  

( ),2Gξ  holds. 

Case (b)(ii). Let the vertices of mC  stream in first. It implies that exactly 1−m  

vertices of mC  can park with exactly one vertex of nC  parking as well. On loop one 

we have the graph 11 −+ nPK  looping. Since the graph has no pendant vertex a 

further loop will be required. Considering all random streaming we are left with 

either 1K  and one vacant parking space, or 11 KK ∪  and two vacant parking spaces 

or 2P  and two vacant parking spaces. It suggests that for some graphs, equality 

( ) ( ) ( ),2121 GGGG ξ+ξ=+ξ  holds. 

Since all cases have been argued and all the suggestions are assertive, the partial 

result that for some graphs ( ) ( ) ( ),2121 GGGG ξ+ξ=+ξ  follows conclusively. 

(c) Consider the tetrahedron, ,1G  [3] and the path .nP  We have that 

( ) ,3
1

nvdG +=  ( )1GVv ∈∀  and ( ) 5=ud
nP  (pendant vertices) or 6. Any random 

streaming of vertices allows exactly n vertices to park and on stream one, a 

tetrahedron loops. Hence loop two is required because the tetrahedron has no pendant 

vertices. It follows that for some graphs, 

( ) ( ) ( ) ( ) .11102 11 +ξ+ξ=++==+ξ nn PGPG  

So we could show for specific cases that ( ) ( ) ( ) .12121 +ξ+ξ≤+ξ GGGG  

To settle the theorem we need to show that ( ) ( ) ( ) ,12121 +ξ+ξ>+ξ GGGG  is 

false in general. In terms of the definition of ( )Gξ  we know that ,nK  N∈n  is the 

most complex graph and we know that 21 GG +  is always a subgraph of ( ).mnK +  It 

easily follows that ( ) ( ( ) ) ( ) ( ) ( ).mnmnmns KKKKKK ξ+ξ=+ξ=ξ=ξ +  In fact the 

”1“+  only follows if the degree sequence of only one graph is a parking function. 

Hence, ( ) ( ) ( ) 12121 +ξ+ξ>+ξ GGGG  is false in general. 

So the result of the theorem follows. ~ 
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2.3. Appendix III of Bondy and Murty [3] 

As stated in Bondy and Murty [3], there are a number of graphs which are 

interesting. We will present the looping number of some of those mentioned. 

2.3.1. Frucht graph ([8], 1949) 

For the Frucht graph, 1F  on first stream, any 10 of the 12 vertices streaming at 

random will park and always leave two isolated (disjoint) vertices say, iv  and .jv  

Since ( ) ( ) 0== ji vdvd  they may both occupy any of the two remaining vacant 

parking spaces on loop one. Hence, ( ) .11 =ξ F  

2.3.2. Folkman graph ([6], 1967) 

Folkman proved that every edge, but not vertex-transitive regular graph, has at 

least twenty vertices. The Folkman graph 2F  has exactly twenty vertices, the best 

possible result. Each vertex iv  has ( ) .4=ivd  So a set of 17=T  vertices 

streaming randomly on the first stream will park leaving three vertices in TF −2  of 

which at most, only one vertex say, iv  will have ( ) 2=ivd  and the other two with 

degree 0. Hence, on loop one all vertices will park. So, ( ) .12 =ξ F  

2.3.3. The platonic octahedron graph ([7], 1967) 

The graph is 4-regular on six vertices. Hence any three vertices can park on the 

first stream leaving either 3C  or 3P  to loop. Since parking spaces ,1p  2p  and 3p  

are available only two vertices can park on loop one in the case ,3C  loops. So, 

.2=ξ  

We further observe that 

( ) ( ) ( ){ }
������ ������� ��

loopsC

d

-3

0,2,2,2,4,4,4,4,4,4=R  or ( ) ( ){ }.1,2,1,4,4,4,4,4,4

-3

����� ������ ��
loopsP

 

It shows that the looping number is dependent on the permutations of vertex 

streaming per loop. 

[Open problem: For which graphs will we have that, if the respective degree 

sequences of graphs 1G  and 2G  are parking functions then the degree sequence of 

21 GGH +=  is a parking function as well? 211 PKK =+  is an example]. 
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[Open problem: Consider the simple connected graphs ....,,,, 321 nGGGG  

What can be said about ( ( ) ) ].?1 ini G≤≤ξ ∪  

[Open problem: If for the simple connected graphs G and ,iH  ki ...,,3,2,1=  

at least one degree sequence is not a parking function, it is expected that the looping 

number, 

( ) ( ) ( )∑
∀

∀ +ξ+ξ≤+ξ

i

iii HGHG .1,  

Is the conjecture true?] 

[Open problem: Define the first line graph of a simple connected graph G the 

graph .1=�G  We know that the degree sequence of nP  is a parking function. We also 

know that 1PPn →∞→�  of which the degree function is a parking function. We also 

know that nn CC →∞→�  of which the degree sequence is not a parking function. 

(a) If it is true that the degree sequence of a simple connected graph G is a 

parking function, is it consequently true that the degree sequence of the line graph 

∞→�G  is a parking function as well? 

(b) If it is true that the degree sequence of a simple connected graph G is not a 

parking function, is it consequently true that the degree sequence of the line graph 

∞→�G  is not a parking function as well?]. 

Open access. This paper is distributed under the terms of the Creative Commons 

Attribution License which permits any use, distribution and reproduction in any 

medium, provided the original author(s) and the source are credited. 
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